

Available online at www.sciencedirect.com

JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL

Journal of Molecular Catalysis A: Chemical 251 (2006) 286-290

www.elsevier.com/locate/molcata

Bis(μ -hydroxo) bridged di-vanadium-catalyzed selective epoxidation of alkenes with H_2O_2

Noritaka Mizuno^{a,b,*}, Yoshinao Nakagawa^a, Kazuya Yamaguchi^{a,b}

^a Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ^b Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,

4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Available online 9 March 2006

Abstract

The Keggin-type di-vanadium-substituted silicotungstate $[\gamma-1,2-H_2SiV_2W_{10}O_{40}]^{4-}$ with the {VO-(μ -OH)₂-VO} core catalyzes the epoxidation of various alkenes using only 1 equiv. H_2O_2 with the high epoxide yield and high efficiency of H_2O_2 utilization under very mild reaction conditions. Notably, this system shows unique stereospecificity, diastereoselectivity, and regioselectivity, which are quite different from those reported for the epoxidation systems including $[\gamma-SiW_{10}O_{34}(H_2O)_2]^{4-}$.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Alkene; Epoxidation; Hydrogen peroxide; Polyoxometalate; Vanadium

1. Introduction

Vanadium is an important element in biology, inorganic chemistry and organic syntheses [1-7], and can heterogeneously or homogenously catalyze selective oxidation reactions of alkanes, alkenes, aromatics, alcohols, halides, etc. [1–3,6–12]. While the homogenous oxidation catalysis by mono- and di-vanadium complexes has extensively been studied, scarcely is known of the oxidation catalysis by bis(µ-hydroxo) bridged di-vanadium compounds [1,2,6,7,13,14]. In addition, even mono-vanadium complexes could not efficiently catalyze the epoxidation of alkenes with a green oxidant of H₂O₂ because of the contribution of the radical mechanism; for example, the oxidation of cyclohexene with H₂O₂ catalyzed by vanadium-based catalysts proceeded mainly at the allylic position to give the corresponding enol and enone (allylic oxidation) [8–12] and the efficiency of H₂O₂ utilization is intrinsically low. Therefore, vanadium-catalyzed H2O2-based epoxidation of alkenes with high selectivity to the epoxide and high efficiency of H_2O_2 utilization is previously unknown while it is well known that other transition metals such as tungsten, manganese, and iron show relatively high activity, selectivity, and efficiency of H_2O_2 utilization [15].

1381-1169/\$ – see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2006.02.012 Here, we report that the $[\gamma-1,2-H_2SiV_2W_{10}O_{40}]^{4-}$ (I) with the {VO-(μ -OH)₂-VO} core can efficiently catalyze epoxidation of alkenes using only 1 equiv. H₂O₂ with the high epoxide yield and high efficiency of H₂O₂ utilization [16]. Notably, this system shows unique stereospecificity, diastereoselectivity, and regioselectivity, which are quite different from those reported for the epoxidation systems [16].

2. Results and discussion

The scope of the present epoxidation by tetra-n-butylammonium salt of I (TBA-I) with regard to various kinds of mono-alkenes using 1 equiv. H₂O₂ (except for gaseous alkenes such as propene and 1-butene) was examined. The results are summarized in Table 1. Under the present reaction conditions, neither allylic oxidation nor hydrolysis of epoxides proceeded in all cases. The epoxidation did not proceed at all in the absence of catalyst (entry 8). Mono- and tri-vanadium substituted compounds and fully occupied silicotungstate were completely inactive under the present conditions (entries 5-7). By using TBA-I, non-activated aliphatic terminal alkenes including propene could be transformed to the corresponding epoxide with high selectivity and efficiency of H₂O₂ utilization (entries 1-4, and 11). A larger-scale reaction (50-fold scaled up) for 1-octene showed the same results as those for the small-scale experiments in Table 1 (99% selectivity to 1,2-epoxyoctane,

^{*} Corresponding author. Tel.: +81 3 5841 7272; fax: +81 3 5841 7220. *E-mail address:* tmizuno@mail.ecc.u-tokyo.ac.jp (N. Mizuno).

Table 1	
Epoxidation of various alkenes with H ₂ O ₂ ^a	

Entry	Catalyst	Alkene	Yield (%)	Product (selectivity (%))	H ₂ O ₂ efficiency ^b (%)
1 ^c	TBA-I	Propene	87	1,2-Epoxypropane (99)	87
2 ^c	TBA-I	1-Butene	91	1,2-Epoxybutane (99)	91
3	TBA-I	1-Hexene	92	1,2-Epoxyhexane (99)	92
4	TBA-I	1-Octene	93	1,2-Epoxyoctane (99)	93
5 ^d	$[\alpha - SiVW_{11}O_{40}]^{5-}$	1-Octene	<1	_	-
6 ^d	$[\alpha - 1, 2, 3 - SiV_3W_9O_{40}]^{7-}$	1-Octene	<1	-	-
7 ^d	$[\gamma - SiW_{12}O_{40}]^{4-}$	1-Octene	<1	_	-
8	None	1-Octene	<1	_	-
9	TBA-I	cis-2-Octene	90	cis-2,3-Epoxyoctane (99, only cis)	90
10	TBA-I	2-Methyl-1-heptene	88	1,2-Epoxy-2-methylheptane (98)	90
11	TBA-I	1-Decene	93	1,2-Epoxydecane (99)	93
12	TBA-I	Styrene	88	Styrene oxide (99)	88
13	TBA-I	Cyclohexene	90	1,2-Epoxycyclohexane (99)	92
14	TBA-I	Cyclooctene	93	1,2-Epoxycyclooctane (99)	93

^a Reaction conditions: alkene (33.3 mM), catalyst (1.67 mM), H_2O_2 (30% aq., 33.3 mM), CH_3CN/t -BuOH (1.5/1.5 mL), 293 K, 24 h. Yields and selectivities were determined by gas chromatography or ¹H NMR using an internal standard technique and were based on alkenes.

^b H₂O₂ efficiency (%) = [products (mol)/consumed H₂O₂ (mol)] × 100.

^c Propene (6 atm), 1-butene (3 atm).

^d Tetra-*n*-butylammonium salts were used.

93% GC yield, and 86% isolated yield). The reaction rate increased with increase in the reaction temperature, and the TOF reached up to $38 h^{-1}$ at 313 K, keeping the selectivity to 1,2-epoxyoctane as high as >99%, while the efficiency of H₂O₂ utilization was a little decreased from 93% (293 K) to 85% (313 K). The catalytic epoxidation of cyclic alkenes such as cyclohexene and cyclooctene also efficiently proceeded to afford the corresponding epoxides in high yields (entries 13 and 14). The interesting point is that styrene (both styrene and styrene oxide are unstable under acidic conditions) was highly selectively epoxidized to styrene oxide without any by-products (entry 12).

For the competitive epoxidation of *cis*- and *trans*-2-octenes (100 μ mol each, the other conditions were the same as those in Table 1), the initial rates for the epoxidation of *cis*- and *trans*-2-octene were 0.32 and 0.001 mM min⁻¹, respectively. The ratio of the formation rate of *cis*-2,3-epoxyoctane to that of the *trans* isomer was >300 and the value is much larger than those (1.3–11.5) reported for the other stereospecific epoxidation systems [17]. In this case, the configuration around the C=C moieties was completely retained in the corresponding epoxides. The epoxidation of 3-substituted cyclohexenes such as 3-methyl-1-cyclohexene and 2-cyclohexen-1-ol showed unusual diastereoselectivities; the epoxidation was highly diastereoselective and gave the corresponding epoxides with oxirane ring *trans* to the substituents (*anti* configuration) [Eqs. (1) and (2)].

Further, it is noted that more accessible, but less nucleophilic double bonds in non-conjugated dienes such as trans-1,4-hexadiene, R-(+)-limonene, 7-methyl-1,6-octadiene, and 1-methyl-1,4-cyclohexadiene were highly regioselectively epoxidized. The results for the epoxidation of dienes with H₂O₂ catalyzed by TBA-I are shown in Table 2. For the *trans*-1,4-hexadiene epoxidation (entry 1), the [terminal epoxide]/[total epoxide] ratio was >0.99 and much higher than those reported for the epoxidation with NaOCl or PhIO; Mn(TTPPP)(OAc)/NaOCl (0.35) [18], Mn(T(2',6'-G1APh)P)Cl/PhIO (0.20) [19], Mo(CO)₆/CHP (0.14) [20], Mn(TPP)(OAc)/NaOC1(0.03) [18], and Mn(T(3',5'-G2Ph)P)Cl/PhIO (0.03) [21]. In addition, for the (R)-(+)limonene epoxidation (entry 2), the [8,9-epoxide]/[total epoxide] ratio was 0.99 and the value was much higher than those reported for the epoxidation with H₂O₂ by PhCN/KHCO₃ (0.37) [22], and Ti-beta zeolite (0.55) [23]. The comparison with sterically hindered porphyrin systems with NaOCl or PhIO shows that the regioselectivity for TBA-I is higher than the values reported (0.62-0.75) [18,24-26]. Similarly, in the case of 7-methyl-1,6-octadiene (entry 3), the [terminal epoxide]/[total epoxide] was 0.93 and the value was much higher than those for the H₂O₂-based epoxidation systems of Al₂O₃/H₂O₂ (<0.01) [27], CF₃CH₂OH/Na₂HPO₄/H₂O₂ (<0.01) [28], and (CF₃)₂CO/C₂F₅OH/NaHPO₄/H₂O₂ (<0.01) [29].

Next, the regioselectivity for the epoxidation of dienes by TBA-I is compared with those by various tungstate

Table 2	
Epoxidation of various diene	s with H_2O_2 catalyzed by TBA- I ^a

Entry	Diene	Product (yield (%))	[Less substituted epoxide]/[total epoxide]	H ₂ O ₂ efficiency ^b (%)
1	trans-1,4-Hexadiene	1,2-Epoxy-trans-4-hexene (91)	>0.99	91
2	(R)-(+)-Limonene	8,9-Epoxylimonene (89) Diepoxide (1)	0.99	91
3	7-Methyl-1,6-octadiene	7-Methyl-1,2-epoxy-6-octene (77) 7-Methyl-6,7-epoxy-1-octene (5) Diepoxide (4)	0.93	87
4	1-Methyl-1,4-cyclohexadiene	1-Methyl-4,5-epoxy-1-cyclohexene (71) 1-Methyl-1,2-epoxy-4-cyclohexene (5)	0.88	81

^a Reaction conditions: diene (33.3 mM), TBA-I (1.67 mM), H_2O_2 (30% aq., 33.3 mM), CH_3CN/t -BuOH (1.5/1.5 mL), 293 K, 24 h. Yields and selectivities were determined by gas chromatography or ¹H NMR using an internal standard technique and were based on diene.

^b H_2O_2 efficiency (%) = [products (mol)/consumed H_2O_2 (mol)] × 100.

compounds (Fig. 1). For example, the regioselectivity for (*R*)-(+)-limonene with H₂O₂ was much higher than those with $[\gamma$ -SiW₁₀O₃₄(H₂O)₂]⁴⁻ ([8,9-epoxide]/[total epoxide]=0.37), [{W(=O)(O₂)₂}₄(μ -PO₄)]³⁻ (0.03), and [{W(=O)(O₂)₂}(H₂O)]₂(μ -O)]²⁻(0.18), which are reported to be active for the epoxidation with H₂O₂ [30–32]. Similarly, the regioselectivities for the epoxidation of *trans*-1,4-hexadiene, 1-methyl-1,4-cyclohexadiene, and 7-methyl-1,6-octadiene were much different from those for the other tungstate compounds.

The relative reactivity (rate) of a series of C₈-alkenes decreased in the order of 2-methyl-1-heptene (1.1)>1-octene (1.0 taken as unity)>*cis*-2-octene (0.87)>2-methyl-2-heptene (0.03)>*trans*-2-octene (<0.01) (Table 3). This order is not consistent with that of the π (C=C) HOMO energies of C₈-olefins because the π (C=C) HOMO energies decreased with increase in numbers of the alkyl substituents in alkenes [33]. Therefore, the inconsistence of the orders between the π (C=C) HOMO energy and the reactivity would be caused by the steric constraints of the active site of **I**, that is, an active oxygen species formed by the reaction of **I** with H₂O₂ is embedded in the polyoxometalate framework.

Table 3 Initial and relative rates for the epoxidation of a series of C_8 -alkenes with H_2O_2 catalyzed by TBA-I^a

Entry	Alkene	R_0 ($\mu M \min^{-1}$)	Relative rateb
1	2-Methyl-1-heptene	420	1.1
2	1-Octene	384	1.0
3	cis-2-Octene	334	0.87
4	2-Methyl-2-heptene	10	0.03
5	trans-2-Octene	<1.4	< 0.01

^a Reaction conditions: alkene (33.3 mM), **I** (tetrabutylammonium salt, 1.67 mM), H_2O_2 (30% aq., 33.3 mM), CH₃CN/*t*-BuOH (1.5/1.5 mL), 293 K. Initial rates (R_0) were determined from the reaction profiles at low conversion (<10%) of hydrogen peroxide.

^b The R_0 value obtained with 1-octene was taken as unity.

No significant changes of in situ IR spectra were observed during the catalytic epoxidation by TBA-I with H_2O_2 . On the other hand, a $H_3PW_{12}O_{40}/H_2O_2$ /alkene mixture exhibited a drastic change of the spectral pattern due to the conversion of $[PW_{12}O_{40}]^{3-}$ to $[\{W(=O)_2(O_2)_2\}_4(\mu-PO_4)]^{3-}$ and $[\{W(=O)(O_2)_2(H_2O)\}_2(\mu-O)]^{2-}$. The first-order dependence of the reaction rate on the concentration of TBA-I

Fig. 1. Ratio of less substituted epoxides to total epoxides formed by the epoxidation of various dienes.

and the fact that the regioselectivity for TBA-I was much different from those for the other tungstates show that the fragmentation of TBA-I does not occur during the catalytic process. In addition, it was confirmed by in situ IR and NMR measurements that the tungstate compounds such as $[\gamma-SiW_{10}O_{34}(H_2O_2)]^{4-}$ and $[W_2O_3(O_2)_4(H_2O_2)_2]^{2-}$ were not formed during the catalysis. The ⁵¹V NMR spectrum of the catalyst recovered after completion of the epoxidation in CD₃CN showed a line at $-564 \text{ ppm} (\Delta v_{1/2} = 125 \text{ Hz})$ and the ¹⁸³W NMR spectrum in CD₃CN showed three lines at $\delta = -84$ ppm $(\Delta v_{1/2} = 9.9 \text{ Hz}), -97 \text{ ppm} (\Delta v_{1/2} = 2.3 \text{ Hz}), \text{ and } -131 \text{ ppm}$ $(\Delta v_{1/2} = 1.6 \text{ Hz})$ with an integrated intensity ratio of 2:1:2, respectively, in agreement with the γ -Keggin framework. The lines due to the tungstate compounds such as $[\alpha-\text{SiW}_{12}\text{O}_{40}]^{4-}$, $[\gamma$ -SiW₁₀O₃₄(H₂O)₂]⁴⁻, $[{W(=O)(O_2)_2(H_2O)}_2(\mu$ -O)]²⁻, and $[H_nWO_2(O_2)_2]^{(2-n)-}$ were not observed. IR and UV-vis spectra of the catalyst recovered after the completion of the epoxidation were the same as those of the fresh one, also suggesting the maintenance of the γ -Keggin framework of I. All these facts strongly show that the {VO- $(\mu$ -OH)₂-VO} core is preserved in the cluster framework of I during the catalytic process.

As above mentioned, mono- and tri-vanadium-substituted compounds of $[\alpha$ -SiVW₁₁O₄₀]⁵⁻ and $[\alpha$ -1,2,3-SiV₃W₉O₄₀]⁷⁻ were completely inactive for the epoxidation under the present conditions, suggesting that the V–O–W and V=O centers are not the active sites. The fully occupied silicotungstates of $[\gamma$ -SiW₁₂O₄₀]⁴⁻ with the same structure of I was inactive, suggesting that the tungsten atoms in I are inactive. These results show that {VO-(μ -OH)₂-VO} core in I would act as an active site for the present epoxidation [34].

3. Experimental

Aqueous solution of $[\gamma-1,2-H_2SiV_2W_{10}O_{40}]^{4-}$ was prepared according to ref. [35], and the anion was isolated as the tetra*n*-butylammonium salt (TBA-I). K₈[γ-SiW₁₀O₃₆]·12H₂O [36] (8 g, 2.7 mmol) was quickly dissolved in 1 M HCl (28 mL). NaVO₃ (0.5 M, 11 mL, 5.5 mmol) was added, and the mixture was gently stirred for 5 min. The solution was filtered off followed by the addition of $[(n-C_4H_9)_4N]Br$ (8 g, 25 mmol) in a single step. The resulting yellow precipitate was collected by the filtration and then washed with an excess amount of water (300 mL). The crude product was purified twice with the precipitation method (addition of 1L of H₂O into acetonitrile solution of TBA-I (50 mL)). Analytically pure TBA-I was obtained as a pale yellow powder. Yield: 7.43 g (76%). Anal. calcd for $[(C_4H_9)_4N]_4[\gamma-1,2-H_2SiV_2W_{10}O_{40}] \cdot H_2O$: C, 21.4; H, 4.15; N, 1.56; Si, 0.78; V, 2.83; W, 51.1; H₂O, 0.50. Found: C, 21.4; H, 3.91; N, 1.59; Si, 0.79; V, 2.88; W, 51.2; H_2O , 0.50. ⁵¹V NMR (CD₃CN): An intense line at -563.6 ppm $(\Delta v_{1/2} = 133 \text{ Hz})$ attributed to 2 equiv. vanadium atoms was observed. ¹⁸³W NMR (CD₃CN): δ , -82.2 ppm ($\Delta v_{1/2}$ = 9.6 Hz), -95.6 ppm ($\Delta v_{1/2} = 2.5$ Hz) and -129.7 ppm ($\Delta v_{1/2} = 2.9$ Hz) with an integrated intensity ratio of 2:1:2, respectively. ²⁹Si NMR (CD₃CN): δ , -84.0 ppm ($\Delta v_{1/2}$ = 2.0 Hz). UV-vis spectrum (in CH₃CN) showed shoulder bands at 240 nm $(\varepsilon = 36,000 \,\mathrm{M^{-1} \, cm^{-1}})$, 285 nm $(\varepsilon = 24,000 \,\mathrm{M^{-1} \, cm^{-1}})$ and

350 nm (ε = 5900 M⁻¹ cm⁻¹), characteristic of the γ-Keggin structure [37]. IR spectrum (KBr, cm⁻¹): 1151, 1106, 1057, 1004, 995, 966, 915, 904, 875, 840, 790, 691, 550, 519, 482, 457, 405.

The epoxidation of gaseous substrates (propene and 1butene) was carried out with Teflon coated autoclave. For the other substrates, glass tube reactor was used. The epoxidation was carried out as follows: catalyst (1.67 mM); CH₃CN/*t*-BuOH (1.5/1.5 mL); H₂O₂ (30% aq., 33.3 mM), and substrates (propene, 6 atm; 1-butene, 3 atm; others, 33.3 mM) were charged in the reaction vessel. The reaction was carried out at 293 \pm 0.2 K. The reaction solution was periodically sampled and analyzed by GC in combination with mass spectroscopy. The products were identified by the comparison of mass and NMR spectra with those of authentic samples. Remaining H₂O₂ after the reaction was analyzed by the Ce^{4+/3+} titration.

Acknowledgments

This work was supported by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST) and the Grants-in-Aid for Scientific Researches ((A) and Priority Area "Molecular Nano Dynamics") from Ministry of Education, Culture, Sports, Science and Technology.

References

- [1] (a) T. Hirao, Coord. Chem. Rev. 237 (2003) 1;
- (b) T. Hirao, Chem. Rev. 97 (1997) 2707.
- [2] A.E. Shilov, G.B. Shul'pin, Chem. Rev. 97 (1997) 2879.
- [3] Thematic issue on vanadia catalysts for selective oxidation of hydrocarbons and their derivatives, Appl. Catal. A 157 (1997) 1.
- [4] Vanadium and Its Role in Life, in: H. Sigel, A. Sigel (Eds.), Marcel Dekker Inc., New York, 1995.
- [5] (a) F. Jiang, O.P. Anderson, S.M. Miller, J. Chen, M. Mahroof-Tahir, D.C. Crans, Inorg. Chem. 37 (1998) 5439;
 (b) D.C. Crans, J.J. Smee, E. Gaidamauskas, L. Yang, Chem. Rev. 104 (2004) 849.
- [6] A. Butler, M.J. Clague, G.E. Meister, Chem. Rev. 94 (1994) 625.
- [7] A.G.J. Ligtenbarg, R. Hage, B.L. Feringa, Coord. Chem. Rev. 237 (2003) 89.
- [8] U. Schuchardt, M.C. Guerreiro, G.B. Shul'pin, Russ. Chem. Bull. 47 (1998) 247.
- [9] O. Bortolini, F. Di Furia, P. Scrimin, G. Modena, J. Mol. Catal. 7 (1980) 59.
- [10] E.J. Eisenbraun, A.R. Bader, J.W. Polacheck, E. Reif, J. Org. Chem. 28 (1963) 2057.
- [11] R. Neumann, M. Levin-Elad, Appl. Catal. A 122 (1995) 85.
- [12] (a) D. Wei, W. Chuei, G.L. Haller, Catal. Today 51 (1999) 501;
 (b) G. Bellussi, M.S. Rigutto, Stud. Surf. Sci. Catal. 85 (1994) 177.
- [13] A.M. Khenkin, L. Weiner, Y. Wang, R. Neumann, J. Am. Chem. Soc. 123 (2001) 8531.
- [14] R.D. Gall, M. Faraj, C.L. Hill, Inorg. Chem. 33 (1994) 5015.
- [15] B.S. Lane, K. Burgess, Chem. Rev. 103 (2003) 2457, and references cited therein.
- [16] Y. Nakagawa, K. Kamata, M. Kotani, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 44 (2005) 5136.
- [17] N. Mizuno, K. Yamaguchi, K. Kamata, Coord. Chem. Rev. 249 (2005) 1944, and references cited therein.
- [18] K.S. Suslick, B.R. Cook, J. Chem. Soc., Chem. Commun. (1987) 200.

- [19] K.S. Suslick, The Porphyrin Handbook, vol. 4, Academic Press, New York, 2000, p. 41.
- [20] M.N. Sheng, J.G. Zajacek, J. Org. Chem. 35 (1970) 1839.
- [21] P. Bhyrappa, J.K. Young, J.S. Moore, K.S. Suslick, J. Mol. Catal. A 133 (1996) 109.
- [22] R.G. Carlson, N.S. Behn, C. Cowles, J. Org. Chem. 36 (1971) 3832.
- [23] J.C. Van der Waal, M.S. Rigutto, H. van Bekkum, Appl. Catal. A 167 (1998) 331.
- [24] T. Lai, S.K.S. Lee, L. Yeung, H. Liu, I.D. Williams, C.K. Chang, Chem. Commun. (2003) 620.
- [25] P. Battioni, J.P. Renaud, J.F. Bartoli, M. Reina-Artiles, M. Fort, D. Mansuy, J. Am. Chem. Soc. 110 (1988) 8462.
- [26] K.-H. Ahn, J.T. Groves, Bull. Korean Chem. Soc. 15 (1994) 957.
- [27] M.C.A. van Vliet, D. Mandelli, I.W.C.E. Arends, U. Schuchardt, R.A. Sheldon, Green Chem. 3 (2001) 243.
- [28] M.C.A. van Vliet, I.W.C.E. Arends, R.A. Sheldon, Synlett (2001) 248.
- [29] M.C.A. van Vliet, I.W.C.E. Arends, R.A. Sheldon, Synlett (2001) 1305.

- [30] K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi, N. Mizuno, Science 300 (2003) 964.
- [31] C. Venturello, R. D'Aloisio, J.C.J. Bart, M. Ricci, J. Mol. Catal. 32 (1985) 107.
- [32] A.J. Bailey, W.P. Griffith, B.C. Parkin, J. Chem. Soc., Dalton Trans. (1995) 1833.
- [33] K. Kamata, Y. Nakagawa, K. Yamaguchi, N. Mizuno, J. Catal. 224 (2004) 224.
- [34] The NMR of ¹H, ⁵¹V, and ¹⁸³W and CSIMS spectra suggest that the {VO-(μ -OH)₂-VO} core in I reacts with H₂O₂ to form {VO-(μ -OH)(μ -OOH)-VO} species [16]. This species would be specific for epoxidation compared with the other vanadium catalysts. Further investigations of the active species and mechanistic studies for the epoxidation of alkenes are in progress.
- [35] J. Canny, R. Thouvenot, A. Tézé, G. Hervé, M. Leparulo-Loftus, M.T. Pope, Inorg. Chem. 30 (1991) 976.
- [36] A. Tézé, G. Hervé, Inorg. Synth. 27 (1990) 85.
- [37] A. Tézé, J. Canny, L. Gurdan, R. Thouvenot, G. Hervé, Inorg. Chem. 25 (1996) 1001.